
Visual and Textual Knowledge
Representation in DESIRE

Catholijn M. Jonker1, Rob Kremer2, Pim van Leeuwen1, Dong Pan2, Jan Treur1

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

Email: {jonker, treur}@cs.vu.nl, URL: http://www.cs.vu.nl/{~jonker,~treur}

2 University of Calgary, Software Engineering Research Network
2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

 Email: {kremer, pand}@cpsc.ucalgary.ca

Abstract. In this paper, graphical, conceptual graph-based
representations for knowledge structures in the compositional
development method DESIRE for knowledge-based and multi-agent systems
are presented, together with a graphical editor based on the Constraint
Graph environment. Moreover, a translator is described which translates
these graphical representations to textual representations in DESIRE. The
strength of the combined environment is a powerful -- yet easy-to-use --
framework to support the development of knowledge based and multi-agent
systems. Finally, a mapping is presented from DESIRE, that is based on
order sorted predicate logic, to Conceptual Graphs.

1 Introduction

Most languages for knowledge acquisition, elicitation, and reasoning result in
specifications in pure text format. Textual representation is easier for a computer
program to process. However, textual representation is not an easily understandable
form, especially for those domain experts who are not familiar with computer
programming. Visual representation of knowledge relies on graphics rather than text.
Visual representations are more understandable and transparent than textual
representations [7].

DESIRE (DEsign and Specification of Interacting REasoning components) [2] is a
compositional [3] development method used for the design of knowledge-based and
multi-agent systems. DESIRE supports designers during the entire design process:
from knowledge acquisition to automated prototype generation. DESIRE uses
composition of processes and of knowledge composition to enhance transparency of
the system and the knowledge used therein.

Originally, a textual knowledge representation language was used in DESIRE that
is based on order sorted predicate logic. Recently, as a continuation of the work
presented in [6] a graphical representation method for knowledge structures has been
developed, based on conceptual graphs [8].

Constraint Graphs [5] is a concept mapping "meta-language" that allows the
visual definition of any number of target concept mapping languages. Once a target
language is defined (for example, the DESIRE's graphical representation language) the

constraint graphs program can emulate a graphical editor for the language as though it
were custom build for the target language. This "custom" graphical editor can prevent
the user from making syntactically illegal constructs and dynamically constraints the
choices of the user to those allowed by the syntax. Constraint Graph's graphical
environment is used to present knowledge in a way that corresponds closely to the
graphical representation language for knowledge that is used in DESIRE. A translator
is described that bridges the gap between the graphical representation and the textual
representation language in DESIRE.

Another well-known knowledge representation language, that also makes use of
graphical notations, is Conceptual Graphs [8]. Knowledge presented in Conceptual
Graphs can also be represented in predicate logic. Since DESIRE is based on order
sorted predicate logic, such knowledge can also be represented in DESIRE. In this paper, a
mapping is given from DESIRE to Conceptual Graphs, thus bringing DESIRE closer to that
representation language.

2 Graphical Knowledge Representation in DESIRE

In this section both graphical and textual representations and their relations are
presented for the specification of knowledge structures in DESIRE [2]. Knowledge
structures in DESIRE consist of information types and knowledge bases. In Sections
2.1 and 2.2 graphical and textual representations of information types are discussed. In
Section 2.3 representations of knowledge bases are discussed.

2.1 Basic Concepts in Information Types

Information types provide the ontology for the languages used in components of the
system, knowledge bases and information links between components. In information
type specifications the following concepts are used: sorts, sub-sorts, objects,
relations, functions, references, and meta-descriptions. For the graphical specification
of information types, the icons in Fig. 1 are used.

sort relation

object

function

meta-description

information type

Fig. 1. Information types: legenda

A sort can be viewed as a representation of a part of the domain. The set of sorts
categorizes the objects and terms of the domain into groups. All objects used in a
specification have to be typed, i.e., assigned to a sort. Terms are either objects,
variables, or function applications. Each term belongs to a certain sort. The
specification of a function consists of a name and information regarding the sorts that
form the domain and the sort that forms the co-domain of the function. The function
name in combination with instantiated function arguments forms a term. The term is

of the sort that forms the co-domain of the function. Relations are the concepts needed
to make statements. Relations are defined on a list of arguments that belong to certain
sorts. If the list is empty, the relation is a nullary relation, also called a propositional
atom. The information type birds is an example information type specifying sorts,
objects, functions and atoms with which some knowledge concerning birds can be
specified. The information type is specified in Fig. 2. With information type birds it
is, for example, possible to express statements like "Tweety is of the type that it
prefers vegetarian food": is_of_type(tweety, food_preference(vegetarian)).

BIRD TYPE

birds

food
preference

is of type

1 2

BIRD DIET

tw
ee

ty

ca
rn

iv
or

e

om
ni

vo
re

ve
ge

ta
ria

n

can fly
information type birds
sorts BIRD,

DIET,
BIRD_TYPE;

objects
tweety : BIRD;
carnivore,
omnivore,
vegetarian : DIET;

functions
food_preference : DIET–> BIRD_TYPE;

relations
can_fly: BIRD;
is_of_type : BIRD * BIRD_TYPE;

end information type

Fig. 2. Information type: birds

Note that being able to express a statement does not mean that the statement is true,
it could be false.

2.2 Compositionality of Information Types

Compositionality of knowledge structures is important for the transparency and
reusability of specifications. In DESIRE two features enable compositionality with
respect to information types: information type references, and meta-descriptions. By
means of information type references it is possible to import one (or more)
information type(s) into another. For example, information type birds above can be
used in an information type that specifies an extended language for specifying
knowledge that compares birds.

Example 1
information type compare_birds

information types birds;
relations same_type: BIRD * BIRD;

end information type

The second feature supporting compositional design of information types is the meta-
description representation facility. The value of distinguishing meta-level knowledge
from object level knowledge is well recognized. For meta-level reasoning a meta-
language needs to be specified. It is possible to specify information types that
describe the meta-language of already existing languages. As an example, a meta-
information type, called about_birds, is constructed using a meta-description of the
information type birds (see Fig. 3). The meta-description of information type birds

connected to sort BIRD_ATOM ensures that every atom of information type birds is
available as a term of sort BIRD_ATOM. Using information type about_birds it is
possible to express that it has to be discovered whether bird Tweety can fly
(to_be_discovered(can_fly(tweety))).

about birds

BIRD ATOM

to be discovered

birds

Fig. 3. Meta-descriptions: about birds

2.3 Knowledge Bases

Knowledge bases express relationships between, for example, domain specific
concepts. Reasoning processes use these relationships to derive explicit additional
information.

Example 2
knowledge base birds_kbs

information types compare_birds;
contents

if has_type(X: BIRD, Y: BIRD_TYPE)
 and has_type(Z: BIRD, Y: BIRD_TYPE)
 then same_type(X: BIRD, Z: BIRD);

if has_type(X: BIRD, type(Y: DIET, flying, Z: HABITAT))
 then flies(X: BIRD);

has_type(tweety, type(vegetarian, flying, hot));
end knowledge base

The knowledge base birds kbs specified in Example 2 expresses which birds are of the
same type, and which birds fly. Although, knowledge bases can be represented
graphically as well, examples have been omitted from this paper.

Finally, a knowledge base can reference several other knowledge bases. The
knowledge base elements of knowledge bases to which the specification refers are also
used to deduce information (an example has been omitted).

3 Constraint Graphs

Constraint graphs is a concept mapping "meta-language" that allows one to visually
define any number of target concept mapping languages. Once a target language is
defined (for example, the DESIRE knowledge representation language) the constraint
graphs program can emulate a graphical editor for the language as though it were
custom build for the target language. This "custom" graphical editor can prevent the
user making synactically illegal constructs. Furthermore, the editor dynamically
constraints user choices to those allowed by the syntax.

TOP

NODE

CONTEXT BOTTOM

ARC

ISA

Fig. 4. The base type lattice for Constraint Graphs

In order to accommodate a large number of visual languages, constraint graphs must
make as few assumptions about concept mapping languages as possible. To this end,
constraint graphs defines only four base components: node, arc, context, and isa (see
Fig. 4). Nodes and arcs are mutually exclusive, where nodes are the vertices from
graph theory, and arcs interconnect other components, and are analogous to edges in
graph theory. Both nodes and arcs may (or may not) be labeled, typed, and visual
distinguished by color, shape, style, etc. Contexts are a sub-type of node and may
contain a partition of the graph. Isa arcs are a sub-type of arc and are used by the
system to define the sub-type relation: one defines one component to the be a sub-
type of another component merely by drawing an isa arc from the sub-type to the
supertype.

Futhermore, the generality requirement of constraint graphs dictates that arcs are
not always binary, but may also be unary or of any arbitrary arity greater than 1 (i.e.,
trinary and n-ary arcs are allowed). For example, the between relation puts a trinary
arc to good use. Constraint graphs arcs may interconnect not only nodes but other
arcs as well. This is not only useful, but necessary because all sub-type and instance-
of relations are defined using an isa arc, arcs between arcs are required to define the
type of any arc. Finally, within constraint graphs no hard distinctions are made

between types and instances, but rather, the object-delegation model [1] is followed
where any object can function as a class or type.

animal

carnivore

wolf

vegetarian

rabbit

eat

eat

Fig. 5. An example Constraint Graphs definition

To illustrate some of the above points, Fig. 5 shows a simple definition. Here, the
fat, directed arcs are the constraint graphs isa arcs and define carnivore and vegetarian to
be sub-types of animal, wolf as a sub-type (or instance-of) of carnivore, and rabbit as a
sub-type (or instance-of) of vegetarian. Furthermore the eat binary relation (dashed arc)
is defined and starts on carnivore and terminates on animal. These terminals are
important: the components at the terminals constrain all sub-types of eat to also
terminate at some sub-type of carnivore and animal respectively. The second eat arc is
defined (by the fat isa arc between it's label and the first eat arc's label) to be a sub-type
of the first eat arc. It is therefore legally drawn between wolf and rabbit, but the editor
would refuse to let it be drawn in the reverse direction: the eat definition says that
rabbits can't eat wolves.

4 The Translator

In Constraint Graphs, three basic types of objects exist: nodes, arcs and contexts. The
elements of the language to be expressed in the Constraint Graphs' environment
therefore need to be mapped onto these basic types. Table 1 below shows the
mapping between DESIRE's knowledge elements and nodes, arcs and contexts.

Object Sort Subsort Meta
description

Function Relation Information
type

Knowledge
Base

NODE NODE ARC ARC ARC ARC CONTEXT CONTEXT

Table 1. Mapping between DESIRE and Contraint Graphs

Constraint Graphs allows the user to further constrain the language definition in by,
for example, restricting the shapes and connector types of the nodes and arcs the
language elements are mapped onto. In our case, we restrict the shape of node Sort to
a rectangle, and the shape of Object to a diamond. Furthermore, sub-sorts, meta-
descriptions and relations will be represented as directed labeled arcs, where the label
takes the shape of an ellipse. Moreover, functions will be depicted as directed labeled

arcs as well, but the label will be a parallelogram. Finally, information types and
knowledge bases are mapped onto contexts, and the shape of these contexts will be
the default: a rectangle.

Fig. 6 below gives an impression of a specification of the DESIRE information
type birds (compare to Fig. 2) in Constraint Graphs.

BIRD TYPE

food
preference

is of type

BIRD DIET

can fly

INF TYPE: birds

tweety carni
vore

omni
vore

veget
arian

Fig. 6. Example of a DESIRE information type represented in Constraint Graphs

5 Relation to Conceptual Graphs

In this paper, graphical notations for knowledge in DESIRE are presented, as well as
a translator which translates specifications of these notations in a graphical
environment called Constraint Graphs to the textual DESIRE representation. Having
this graphical interface brings the knowledge modelling in DESIRE closer to other
well-known knowledge representation languages, such as Conceptual Graphs [8]
because a dedicated interchange procedure could be added to the software. The relation
between Conceptual Graphs and predicate logic is well-known. The fact that DESIRE
is vased on order sorted predicate logic, and the possibility to represent different meta-
levels of information within DESIRE, ensures that all knowledge represented in
Conceptual Graphs can also be represented in DESIRE. In this section a translation
from representations in DESIRE to representations in Conceptual Graphs is defined.

A conceptual graph is a finite, connected, bipartite graph, which consists of two
kinds of nodes: concepts and conceptual relations. Concepts are denoted by a
rectangle, with the name of the concept within this rectangle, and a conceptual
relation is represented as an ellipse, with one or more arcs, each of which must be
linked to some concept. Fig. 7 below shows an example conceptual graph,
representing the episodic knowledge that a girl, Sue, is eating pie fast.

AGENT

OBJECT

MANNERGirl: Sue EAT FAST

PIE

Fig. 7. An example Conceptual Graph

When comparing conceptual graphs with the graphical notations for DESIRE, many
similarities become apparent. For instance, DESIRE's relations are denoted by
ellipses, like conceptual relations, and sorts appear as rectangles, like concepts. Other
elements however, are harder to translate to a Conceptual Graph notation. Table 2
provides an overview of the translation of DESIRE elements to Conceptual Graphs.
Part of this is discussed in some detail.

Objects
Objects in DESIRE are instances of a sort. In Conceptual Graphs (CG) these
instances are represented by individual concepts, i.e., concepts with an individual
marker following the concept name. For example, the object tweety of sort BIRD in
DESIRE is represented by [BIRD: tweety] in CG. Also anonymous individuals can be
translated, e.g., the DESIRE variable X:BIRD is translated into [BIRD: *x] of CG
which means that it is known that an individual of type BIRD exists, but it is
unknown which individual.

Functions
In DESIRE, functions group sorts together by mapping them onto another sort.
Functions can be regarded to be sub-types of a general CG concept FUNCTION,
which takes one or more arguments and produces a result. In DESIRE functions act as
a named placeholder for an object of its result, in which the argument(s) and the name
of the function ensure the placeholder's uniqueness. Function food_preference, for
example of Fig. 2, can be represented by the following Conceptual Graph:

[DIET]<-(ARG)<-[food_preference]-(RSLT)-[BIRD_TYPE].

Relations
Relations in DESIRE can be classified according to their arity. This arity determines
the mapping to Conceptual Graphs. 0-ary relations in DESIRE will have to be
translated to concepts; concepts in Conceptual Graphs form a graph in itself, like
nullary relations form a DESIRE atom in DESIRE. Relations with an arity greater
than zero can be translated into either a conceptual relation with the same arity or a
combination of a concept and (an)other conceptual relation(s). For example, the
relation between: space * brick * brick in DESIRE could be translated into the following
Conceptual Graph:

[SPACE] - (BETW) - [BRICK]
-[BRICK]

This graph is a triadic relation, which could be read as "a space is between a brick and
a brick". Relation is_traveling_from_to: person * origin * destination however could be
translated into the graph

[TRAVEL] -
(AGNT) - [PERSON]
(ORG) - [ORIGIN]
(DEST) - [DESTINATION]

Sub-sorts
In DESIRE, hierarchical relations between sorts are allowed. Sub-sorts in DESIRE
correspond to the type hierarchy of concepts in Conceptual Graphs. In Conceptual
Graphs, hierarchies of both concepts and conceptual relations are possible, but these
hierarchical is-a relations are kept in a separate semantic net from other relations that
exist in the domain.

Desire Element� Graphical Equivalent in
Constraint Graphs

Equivalent in Conceptual
Graphs

Object diamond individual concept
Sort rectangle generic concept
Sub-sort rectangle connected to super-

sort by instance-of arrow
type hierarchy of concepts

Meta-Description dashed arrow from information
type to sort

conceptual relation
-(METALEVEL)-

Function parallelogram concept FUNCTION
Relation ellipse conceptual relation or concept

and conceptual relation(s)
Information type context-box labeled SIG context
Knowledge Base context box labeled KB context
Antecedent context-box labeled ANT context
Consequent context-box labeled CONS context
NOT-context context-box labeled NOT negative context
Information type Reference to
information type

arrow between information
types

context enclosed in another
context

Knowledge base Reference to
KB

arrow between knowledge base
contexts

context enclosed in another
context

KB reference to information
type

arrow from kb to information
type

comparable to first three and last
component in a canon

Rule arrow labeled "implies" between
antecedent and consequent

conceptual relation -(IMP)-

Table 2. DESIRE, Constraint Graphs, and Conceptual Graphs

6 Conclusion

In this paper, graphical representations for knowledge structures in DESIRE [2] have
been presented, together with a graphical editor based on the Constraint Graph
environment [5]. Moreover, a translator has been described which translates these
graphical representations to textual representations in DESIRE. This software

environment can be regarded as a graphical design tool for knowledge in DESIRE, an
interface which offers many advantages to a textual interface. First, Constraint Graphs
can be used to specify knowledge structures, allowing the user to work with a mouse,
pull-down menu's and windows instead of typing the specification conform the textual
DESIRE syntax. Second, the graphical representation of knowledge structures
(supported by the software environment for Constraint Graphs) offers a clear visual
representation, facilitating communication between domain expert and knowledge
engineer in the development process. Third, the graphical representations bring
DESIRE closer to other knowledge representation languages, such as Conceptual
Graphs [8], by defining a mapping from DESIRE to Conceptual Graphs (the other
direction was already covered). In conclusion, the strengths of the Constraint Graphs
environment as an easy to use representation tool in combination with the DESIRE
environment allows for a powerful framework to support the development of
knowledge based or multi-agent systems.

References

1. Abadi, M., and Cardelli, L. A Theory of Object, Springer, New York, 1996.
2. Brazier, F.M.T., Dunin-Keplicz, B., Jennings, N.R., and Treur, J., Formal

specification of Multi-Agent Systems: a real-world case. In: V. Lesser (Ed.),
Proceedings of the First International Conference on Multi-Agent Systems, ICMAS-
95, MIT Press, Cambridge, MA,, 1995, pp. 25-32. Extended version in:
International Journal of Cooperative Information Systems, M. Huhns, M. Singh,
(Eds.), special issue on Formal Methods in Cooperative Information Systems: Multi-
Agent Systems, vol. 6, 1997, pp. 67-94.

3. Brazier, F.M.T., Jonker, C.M., and Treur, J., Principles of Compositional Multi-
Agent System Development, In: J. Cuena (ed.), Proceedings of the IFIP World
Computer Congress, WCC'98, Conference on Information Technologies and
Knowledge Systems, IT&KNOWS'98, 1998.

4. Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements o f
Reusable Object-Oriented Software, Addison-Wesley, Reading, Mass., 1994.

5. Kremer, R., Constraint Graphs: A Constraint Graphs Meta-Language, PhD
Dissertation, Department of Computer Science, University of Calgary, 1997.

6. Moeller J.U., and Willems M. CG-DESIRE: Formal Specification Using Conceptual
Graphs; In: Gaines, B.R. and Musen, M.A. (eds), Proceedings of the 9th Banff
Knowledge Acquisition for Knowledge-Based Systems Workshop KAW-95, Calgary,
1995, pp. 25/1 - 25/20.

7. Nosek, J. T., and Roth, I., A Comparison of Formal Knowledge Representation
Schemes as Communication Tools: Predicate Logic vs. Semantic Network, In:
International Journal of Man-Machine Studies, vol. 33, 1990, pp. 227-239.

8. Sowa, J.F., Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley, Reading, Mass., 1984.

