Visual and Textual Knowledge
Representation in DESIRE

Catholijn M. Jonker, Rob Kremef, Pim van LeeuwenDong Paf Jan Treur

! Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands
Email: {jonker, treur}@cs.vu.nl, URL: http://www.cs.vu.nl/{~jonker,~treur}

2 University of Calgary, Software Engineering Research Network
2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
Email: {kremer, pand}@cpsc.ucalgary.ca

Abstract. In this paper, graphical, conceptual graph-based
representations for knowledge structures in the compositional
development method DESIRE for knowledge-based and multi-agent systems
are presented,together with a graphical editor basedon the Constraint
Graphenvironment. Moreover, a translatoris describedwhich translates
these graphical representations to textual representatioBESIRE. The
strength of the combinedenvironmentis a powerful -- yet easy-to-use--
framework to support the development of knowledge basetmulti-agent
systems.Finally, a mappingis presentedrom DESIRE,that is basedon

order sorted predicate logic, to Conceptual Graphs.

1 Introduction

Most languagesfor knowledge acquisition, elicitation, and reasoningresult in
specificationsin pure text format. Textual representationis easierfor a computer
programto processHowever,textual representatiofis not an easily understandable
form, especiallyfor those domain expertswho are not familiar with computer
programming. Visual representation of knowledge radiegraphicsratherthan text.
Visual representationsare more understandableand transparent than textual
representations [7].

DESIRE (DEsign and Specification of Interacting REasoning components) [2] is a
compositional[3] developmentnethodusedfor the designof knowledge-base@nd
multi-agentsystems .DESIRE supportsdesignersduring the entire designprocess:
from knowledge acquisition to automated prototype generation. DESIRE uses
compositionof processesndof knowledgecompositionto enhanceransparencyf
the system and the knowledge used therein.

Originally, a textual knowledge representation language wasinsB&SIRE that
is basedon order sorted predicatelogic. Recently, as a continuation of the work
presented iff6] a graphicalrepresentatiomethodfor knowledgestructureshasbeen
developed, based on conceptual graphs [8].

ConstraintGraphs[5] is a concept mapping "meta-language'that allows the
visual definitionof any numberof targetconceptmappinglanguagesOncea target
language is defined (for example, the DESIRE's graphical representation lartheage)

constraint graphs program can emulate a graphical editor for the language adtthough
were custom build for the target language. This "custom" grapdidlitar can prevent

the user from making syntacticalijegal constructsanddynamicallyconstraintsthe
choicesof the userto thoseallowed by the syntax. ConstraintGraph's graphical
environmentis usedto presentknowledgein a way that correspond<losely to the
graphical representation language for knowledge that is udeHSIRE. A translator

is described thabridgesthe gap betweenthe graphicalrepresentatiormndthe textual
representation language in DESIRE.

Anotherwell-known knowledgerepresentatiotanguagethat also makesuse of
graphicalnotations,is ConceptualGraphs[8]. Knowledgepresentedn Conceptual
Graphscanalso be representedh predicatelogic. Since DESIRE is basedon order
sorted predicate logic, such knowledge can also be represenBdSIRRE. In this paper,a
mapping is given from DESIRE to Conceptual Graphs, thus bringing DESIRE closer to that
representation language.

2 Graphical Knowledge Representation in DESIRE

In this section both graphical and textual representationsnd their relations are
presentedor the specificationof knowledgestructuresin DESIRE [2]. Knowledge
structures in DESIRE consist of information tymesl knowledgebasesIn Sections

2.1 and 2.2 graphical and textual representations of information types are discussed. In
Section 2.3 representations of knowledge bases are discussed.

2.1 Basic Concepts in Information Types

Information types provide the ontolodgr the languagesisedin componentf the
system, knowledge bases and informatioks betweencomponentsin information
type specificationsthe following conceptsare used: sorts, sub-sorts, objects,
relations, functions, references, ameta-descriptiong-or the graphicalspecification
of information types, the icons in Fig. 1 are used.

— sort)

relation

0 object {:} meta-description

Y function O information type

Fig. 1. Information types: legenda

A sort canbe viewed as a representatiomf a partof the domain. Theset of sorts
categorizeghe objectsandtermsof the domaininto groups.All objectsusedin a
specificationhave to be typed, i.e., assignedto a sort. Terms are either objects,
variables, or function applications. Each term belongs to a certain sort. The
specification of a function consists of a name and information regattuégprts that
form the domain and the sort that forthe co-domainof the function. The function
name in combination with instantiated function arguments fortesma. The termis

of the sort that forms the co-domain of the function. Relations are the concepts needed
to make statements. Relations are defined on a list of arguments that belong to certain
sorts. If the list is empty, the relation is a nullary relation, also calledpositional

atom. The informationtype birds is an exampleinformation type specifying sorts,
objects,functionsand atomswith which some knowledgeconcerningbirds can be
specified. The information type specifiedin Fig. 2. With informationtype birds it

is, for example,possibleto expressstatementdike "Tweety is of the type that it

prefers vegetarian foodi of_type(tweety, food_preference(vegetarian)).

birds

Ccan fly D is of type

1) information type birds
sorts BIRD,
BIRD TYPE DIET,
BIRD_TYPE;
objects
tweety : BIRD;
preff%cr)gnc carmivore,
omnivore,
vegetarian : DIET;
| BIRD | | DET | functions
food_preference: DIET—> BIRD_TYPE;
relations
can_fly: BIRD;
c is_of_type: BIRD * BIRD_TYPE;
z % end information type
2 g
v 2

Fig. 2. Information typebirds

Note that being able to express a statement doemeanthat the statementis true,
it could be false.

2.2 Compositionality of Information Types

Compositionality of knowledge structuresis important for the transparencyand
reusability of specificationsin DESIRE two featuresenablecompositionality with
respectto information types:information type referencesand meta-descriptionsBy
meansof information type referencesit is possible to import one (or more)
informationtype(s)into another.For example,informationtype birds above can be
usedin an information type that specifiesan extendedlanguage for specifying
knowledge that compares birds.

Example 1
information type compare_birds
information types birds;
relations same_type: BIRD * BIRD;
end information type

The second feature supporting compositional design of information typesnseta-
description representatidacility. The value of distinguishingmeta-levelknowledge
from objectlevel knowledgeis well recognized.For meta-levelreasoninga meta-
languageneedsto be specified. It is possibleto specify information types that
describethe meta-languagef alreadyexisting languagesAs an example,a meta-
information type, called about_birds, iS constructedusing a meta-descriptiorof the
information type birds (seeFig. 3). The meta-descriptiorof information type birds
connectedo sort BIRD_ATOM ensuresthat every atom of information type birds is
availableas a term of sort BIRD_ATOM. Using information type about_birds it is
possible to expressthat it hasto be discoveredwhether bird Tweety can fly
(to_be_discovered(can_fly(tweety))).

about birds

<o be discovere§ >

[EROATOV]

Fig. 3. Meta-descriptionsabout birds

2.3 Knowledge Bases

Knowledge bases express relationships between, for example, domain specific
concepts.Reasoningprocessesise theserelationshipsto derive explicit additional
information.

Example 2
knowledge base birds_kbs
information types compare_birds;

contents
if has_type(X: BIRD, Y: BIRD_TYPE)
and has_type(Z: BIRD, Y: BIRD_TYPE)
then same_type(X: BIRD, Z: BIRD);
if has_type(X: BIRD, type(Y: DIET, flying, Z: HABITAT))
then flies(X: BIRD);

has_type(tweety, type(vegetarian, flying, hot));
end knowledge base

The knowledge base birds kbs specified in Example 2 expresses which biofistere
sametype, and which birds fly. Although, knowledge basescan be represented
graphically as well, examples have been omitted from this paper.

Finally, a knowledge base can referenceseveral other knowledge bases.The
knowledge base elements of knowledge bases to which the specification reédss are
used to deduce information (an example has been omitted).

3 Constraint Graphs

Constraint graphs is a concepapping“meta-languagethat allows oneto visually
define any numberof targetconceptmappinglanguagesOnce a targetlanguageis
defined (for examplethe DESIRE knowledgerepresentatiotanguagethe constraint
graphsprogramcan emulatea graphicaleditor for the languageas though it were
custom build for theargetlanguage This "custom" graphicaleditor can preventthe
user making synactically illegal constructs.Furthermore,the editor dynamically
constraints user choices to those allowed by the syntax.

Fig. 4. The base type lattice for Constraint Graphs

In order to accommodatelarge numberof visual languagesconstraintgraphsmust
make as few assumptions about concept mapping languages as pdssthle.end,
constraint graphs defines only foobasecomponentsnode,arc, context,andisa (see
Fig. 4). Nodesandarcsare mutually exclusive,where nodesare the verticesfrom
graph theory, andrcsinterconnecbther componentsandare analogoudo edgesin
graphtheory. Both nodesandarcsmay (or may not) be labeled, typed, and visual
distinguishedby color, shape style, etc. Contextsarea sub-typeof node and may
containa partition of the graph.Isa arcsarea sub-typeof arc and are usedby the
systemto definethe sub-typerelation: one definesone componento the be a sub-
type of anothercomponentmerely by drawingan isa arc from the sub-typeto the
supertype.

Futhermore the generalityrequiremenbf constraintgraphsdictatesthat arcs are
not always binary, but may also be unary or of any arbitrary arity grirated (i.e.,
trinary andn-ary arcsare allowed). For example the betweenrelation puts a trinary
arcto gooduse. Constraintgraphsarcsmay interconnechot only nodesbut other
arcs as well. This is not only useful, but necessary beadlisab-typeandinstance-
of relationsare definedusing an isa arc, arcsbetweenarcsarerequiredto define the
type of any arc. Finally, within constraintgraphsno hard distinctions are made

betweentypesandinstancesput rather,the object-delegatioomodel[1] is followed
where any object can function as a class or type.

Fig. 5. An example Constraint Graphs definition

To illustrate somef the abovepoints, Fig. 5 showsa simple definition. Here, the
fat, directed arcs anhe constraintgraphsisa arcsand define carnivore and vegetarian to
be sub-typesof animal, wolf as a sub-type(or instance-of)of carnivore, andrabbit as a
sub-type (or instance-of) eégetarian. Furthermorethe eat binary relation(dashedarc)
is defined and starts on carnivore and terminateson animal. These terminals are
important: the componentsat the terminals constrainall sub-typesof eat to also
terminateat somesub-typeof camivore andanimal respectively.The secondeat arc is
defined (by the fata arc between it's label and the fieat arc's label) to be sub-type
of the firsteat arc. It is thereforelegally drawn betweenwolf andrabbit, but the editor
would refuseto let it be drawnin the reversedirection: the eat definition saysthat
rabbits can't eat wolves.

4 The Translator

In Constraint Graphs, three basic types of objects exist: nodes, arcsraagts.The
elementsof the languageto be expressedn the Constraint Graphs'environment
thereforeneedto be mappedonto these basidypes. Table 1 below shows the
mapping between DESIRE's knowledge elements and nodes, arcs and contexts.

Object | Sort Subsort | Meta Function | Relation Information | Knowledge
description type Base
NODE | NODE | ARC ARC ARC ARC CONTEXT CONTEXT

Table 1. Mapping between DESIRE and Contraint Graphs

Constraint Graphs allows the ugerfurther constrainthe languagedefinition in by,
for example,restricting the shapesand connectortypes of the nodesand arcsthe
language elements are mapped onto. In our case, we restrict th@thagde Sort to
a rectangle,and the shapeof Objectto a diamond.Furthermore,sub-sorts,meta-
descriptions and relationgill be representeas directedlabeledarcs,wherethe label
takes the shape of an ellipse. Moreoyenctionswill be depictedas directedlabeled

arcsaswell, but the label will be a parallelogram.Finally, information types and
knowledgebasesare mappedonto contexts,andthe shapeof thesecontextswill be
the default: a rectangle.

Fig. 6 belowgives an impressionof a specificationof the DESIRE information
type birds (compare to Fig. 2) in Constraint Graphs.

INF TYPE: birds

can fly

BIRD TYPE

00d
preference

Fig. 6. Example of a DESIRE information type represented in Constraint Graphs

5 Relation to Conceptual Graphs

In this paper, graphical notations for knowledg®IBSIRE are presentedas well as
a translator which translatesspecificationsof these notations in a graphical
environment called Constraint Grapiesthe textual DESIRE representationHaving
this graphicalinterfacebrings the knowledgemodellingin DESIRE closerto other
well-known knowledge representatiorlanguages,such as ConceptualGraphs[8]
because a dedicated interchange procedure bewdddedto the software.The relation
between Conceptual Graphs and predicate logic is well-knownfaththat DESIRE
is vased on order sorted predicate logic, and the possibiligptesentifferent meta-
levels of information within DESIRE, ensuresthat all knowledge representedn
Conceptual Grapheanalso be representeih DESIRE. In this sectiona translation
from representations in DESIRE to representations in Conceptual Graphs is defined.
A conceptual grapis a finite, connectedbipartite graph,which consistsof two
kinds of nodes: conceptsand conceptual relations. Concepts are denotedby a
rectangle,with the nameof the conceptwithin this rectangle,and a conceptual
relationis representea@s an ellipse, with one or more arcs,eachof which must be
linked to some concept. Fig. 7 below shows an example conceptual graph,
representing the episodic knowledge that a girl, Sue, is eating pie fast.

PIE

Fig. 7. An example Conceptual Graph

When comparing conceptual graphigh the graphicalnotationsfor DESIRE, many
similarities becomeapparent.For instance, DESIRE's relations are denoted by
ellipses, like conceptual relations, and sorts appear as rectdikgesoncepts Other
elementshowever,are harderto translateto a ConceptualGraph notation. Table 2
provides an overviewf the translationof DESIRE elementso ConceptualGraphs.
Part of this is discussed in some detail.

Objects

Objectsin DESIRE are instancesof a sort. In ConceptualGraphs (CG) these
instancesare representedy individual concepts,i.e., conceptswith an individual
markerfollowing the conceptname.For example the objectiweety of sort BIRD in
DESIRE is represented by [BIRD: tweety] in CG. Also anonymous individuals can be
translatede.g., the DESIRE variable X:BIRD is translatedinto [BIRD: *x] of CG
which meansthat it is known that an individual of type BIRD exists, but it is
unknown which individual.

Functions

In DESIRE, functions group sorts togetherby mappingthem onto another sort.
Functionscan be regardedto be sub-typesof a generalCG conceptFUNCTION,

which takes one or more arguments and produces a result. In DESIRE functions act as
a named placeholder for an object of its result, in which the argument(8)eaname

of the function ensurethe placeholder'suniquenessFunction food_preference, for

example of Fig. 2, can be represented by the following Conceptual Graph:
[DIET]<-(ARG)<-[food_preference]-(RSLT)-[BIRD_TYPE].

Relations

Relations in DESIRE can be classifiadcordingto their arity. This arity determines
the mappingto ConceptualGraphs.0-ary relationsin DESIRE will have to be

translatedo conceptsiconceptsn ConceptualGraphsform a graphin itself, like

nullary relationsform a DESIRE atomin DESIRE. Relationswith an arity greater
than zero came translatednto eithera conceptuatelationwith the samearity or a
combinationof a conceptand (an)other conceptualrelation(s). For example, the

relationbetween: space * brick * brick in DESIRE could be translatednto the following

Conceptual Graph:

[SPACE] - (BETW) - [BRICK]
-[BRICK]

This graph is a triadic relation, which could be read as "a space is beiweek and
a brick". Relation is_traveling_from_to: person * origin * destinaton however could be
translated into the graph

[TRAVEL] -
(AGNT) - [PERSON]
(ORG) - [ORIGIN]
(DEST) - [DESTINATION]
Sub-sorts

In DESIRE, hierarchicalrelationsbetweensorts are allowed. Sub-sortsin DESIRE
correspondo the type hierarchyof conceptsin ConceptualGraphs.In Conceptual
Graphs, hierarchies dfoth conceptsand conceptuarelationsare possible,but these
hierarchical is-a relations are kept in a sepasataanticnet from other relationsthat

exist in the domain.

Desire Element

Graphical Equivalent in

Equivalent in Conceptual

Constraint Graphs Graphs
Object diamond individual concept
Sort rectangle generic concept
Sub-sort rectangle connected to super-|| type hierarchy of concepts

sort by instance-of arrow

Meta-Description

dashed arrow from information
type to sort

conceptual relation
-(METALEVEL)-

Function

parallelogram

concept FUNCTION

Relation

ellipse

conceptual relation or concept
and conceptual relation(s)

Information type

context-box labeled SIG

context

Knowledge Base context box labeled KB context
Antecedent context-box labeled ANT context
Consequent context-box labeled CONS context

NOT-context

context-box labeled NOT

negative context

Information type Reference to

information type

arrow between information
types

context enclosed in another
context

Knowledge base Reference tq
KB

arrow between knowledge bag
contexts

context enclosed in another
context

KB reference to information
type

arrow from kb to information
type

comparable to first three and I
component in a canon

Rule

arrow labeled "implies" betwe
antecedent and consequent

conceptual relation -(IMP)-

Table 2. DESIRE, Constraint Graphs, and Conceptual Graphs

6 Conclusion

In this paper, graphical representationskioowledgestructuresn DESIRE [2] have
been presentedtogetherwith a graphical editor basedon the Constraint Graph
environment[5]. Moreover, a translatorhas beendescribedwhich translatesthese
graphical representationdo textual representationdn DESIRE. This software

environment can be regarded as a graphical desigfotokhowledgein DESIRE, an
interface which offers many advantages to a textual interface. First, ConGirajufits
can be used to specify knowledge structures, allowing the user to work mitluse,
pull-down menu's and windows instead of typing the specification conform the textual
DESIRE syntax. Second, the graphical representationof knowledge structures
(supportedby the softwareenvironmentfor ConstraintGraphs)offers a clear visual
representationfacilitating communicationbetweendomain expert and knowledge
engineerin the developmentprocess.Third, the graphical representationsring
DESIRE closerto other knowledgerepresentationanguages,such as Conceptual
Graphs[8], by defining a mappingfrom DESIRE to ConceptualGraphs(the other
direction was already coveredih conclusion,the strengthsof the ConstraintGraphs
environment as an easy userepresentatiomool in combinationwith the DESIRE
environmentallows for a powerful framework to support the developmentof
knowledge based or multi-agent systems.

References

1. Abadi, M., and Cardelli, LA Theory of Object, Springer, New York, 1996.

2. Brazier, F.M.T., Dunin-Keplicz, B., Jennings, N.R., and Treur, J., Formal
specification of Multi-Agent Systems: a real-world case. In: V. Lesser (Ed.),
Proceedings of the First International Conference on Multi-Agent Systems, ICMAS-
95, MIT Press, Cambridge, MA,, 1995, pp. 25-32. Extended version in:
International Journal of Cooperative Information Systems, M. Huhns, M. Singh,
(Eds.), special issue on Formal Methods in Cooperative Inform&ymtems:Multi-
Agent Systems, vol. 6, 1997, pp. 67-94.

3. Brazier,F.M.T., Jonker,C.M., and Treur, J., Principles of Compositional Multi-
Agent System Development, In: J. Cuena (ed.), Proceedings of the IFIP World
Computer Congress, WCC'98, Conference on Information Technologies and
Knowledge Systems, IT&KNOWS'98, 1998.

4. Gamma, E.Helm, R., Johnson,R., andVlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, Reading, Mass., 1994.

5. Kremer, R., Constraint Graphs: A Constraint Graphs Meta-Language, PhD
Dissertation, Department of Computer Science, University of Calgary, 1997.

6. Moeller J.U.,andWillems M. CG-DESIRE:Formal Specification Using Conceptual
Graphs;In: Gaines, B.R. and Musen, M.A. (eds), Proceedings of the 9th Banff
Knowledge Acquisition for Knowledge-Based Systems Workshop KAW-95, Calgary,
1995, pp. 25/1 - 25/20.

7. Nosek,J. T., and Roth, I., A Comparisonof Formal Knowledge Representation
Schemesas Communication Tools: PredicateLogic vs. Semantic Network, In:
International Journal of Man-Machine Studies, vol. 33, 1990, pp. 227-239.

8. Sowa,J.F., Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley, Reading, Mass., 1984.

